Nanofabrication inside Microfluidic Chips for Biomimetic Wet-Spinning of Fibres
نویسندگان
چکیده
Microfluidics is an established multidisciplinary research domain with widespread applications in the fields of medicine, biotechnology and engineering. Conventional production methods of microfluidic chips have been limited to planar structures, preventing the exploitation of truly three-dimensional architectures for applications such as multi-phase droplet preparation or wet-phase fibre spinning. Here the challenge of nanofabrication inside a microfluidic chip is tackled for the showcase of a spider-inspired spinneret. Multiphoton lithography, an additive manufacturing method, was used to produce free-form microfluidic masters, subsequently replicated by soft lithography. Into the resulting microfluidic device, a threedimensional spider-inspired spinneret was directly fabricated in-chip via multiphoton lithography. Applying this unprecedented fabrication strategy, the to date smallest spinneret nozzle is produced. This spinneret resides tightly sealed, connecting it to the macroscopic world. Its functionality is demonstrated by wet-spinning of single-digit micron fibres through a polyacrylonitrile coagulation process induced by a water sheath layer. The methodology developed here demonstrates fabrication strategies to interface complex architectures into classical microfluidic platforms. Using multiphoton lithography for in-chip fabrication adopts a high spatial resolution technology for improving geometry and thus flow control inside microfluidic chips. The showcased fabrication methodology is generic and will be applicable to multiple challenges in fluid control and beyond.
منابع مشابه
Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip
Spiders achieve superior silk fibres by controlling the molecular assembly of silk proteins and the hierarchical structure of fibres. However, current wet-spinning process for recombinant spidroins oversimplifies the natural spinning process. Here, water-soluble recombinant spider dragline silk protein (with a low molecular weight of 47 kDa) was adopted to prepare aqueous spinning dope. Artific...
متن کاملBiomimetic wet-stable fibres via wet spinning and diacid-based crosslinking of collagen triple helices
One of the limitations of electrospun collagen as bone-like fibrous structure is the potential collagen triple helix denaturation in the fibre state and the corresponding inadequate wet stability even after crosslinking. Here, we have demonstrated the feasibility of accomplishing wet-stable fibres by wet spinning and diacid-based crosslinking of collagen triple helices, whereby fibre ability to...
متن کاملFibrous polymeric composites based on alginate fibres and fibres made of poly-ε-caprolactone and dibutyryl chitin for use in regenerative medicine.
This work concerns the production of fibrous composite materials based on biodegradable polymers such as alginate, dibutyryl chitin (DBC) and poly-ε-caprolactone (PCL). For the production of fibres from these polymers, various spinning methods were used in order to obtain composite materials of different composition and structure. In the case of alginate fibres containing the nanoadditive trica...
متن کاملPrecision wet-spinning of cell-impregnated alginate fibres for tissue engineering
The selective assembly of functionalised fibres produced by wet-spinning into implantable three dimensional contructs presents attractive prospects for the field of medical bionics[1]. In particular, the incorporation of biological factors and large numbers of cells within biocompatible and macroporous fibres is expected to deliver improvements to drug delivery platforms as well as to tissue en...
متن کاملConstruction of a biomimetic surface on microfluidic chips for biofouling resistance.
A biomimetic surface has been formed on the poly(methyl methacrylate) (PMMA) microfluidic chips for biofouling resistance on the basis of a simple modification. Accordingly, an amphiphilic phospholipid copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate (PMB) was developed to introduce the phosphorylcholine functional groups onto the PMMA surface via the anchoring of ...
متن کامل